Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38607488

RESUMO

We aimed to examine the responses of pollution biomarkers in feral fish from Astyanax genus collected at three hydrographic regions in southern Brazil and the capacity of these tools to differentiate between various levels of contamination. To achieve this, levels of organochlorine pesticides (liver), as well as the biomarkers AChE (muscle and brain), TBARS (liver), and EROD (liver) were assessed. Collections were conducted in four municipalities (Alegrete, Caraá, Lavras, and Santa Vitória) during 1 year, encompassing winter and summer. Fish from Alegrete were the most contaminated overall, but animals sampled in Caraá, and Lavras also displayed elevated levels of current-use pesticides. Elevated levels of endosulfans, DDTs, HCHs, and current-use pesticides were accompanied by elevated levels of TBARS in the liver. Conversely, fish from Santa Vitória exhibited the highest levels of PAHs, accompanied by elevated levels of EROD in the liver and reduced levels of AChE in muscle and brain. TBARS proved to be a reliable biomarker for assessing impacts arising from pesticide accumulation, while EROD and AChE served as valuable indicators of impacts resulting from PAHs accumulation. Ultimately, the results obtained in this study demonstrate the reliable use of the proposed biomarkers for tracking biological impacts stemming from aquatic pollution using feral Astyanax as biomonitoring species.

2.
Chemosphere ; 352: 141423, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340991

RESUMO

Chlorothalonil is a broad-spectrum organochlorine fungicide widely employed in agriculture to control fungal foliar diseases. This fungicide enters aquatic environments through the leaching process, leading to toxicity in non-target organisms. Organic contaminants can impact organism reproduction as they have the potential to interact with the neuroendocrine system. Although there are reports of toxic effects of chlorothalonil, information regarding its impact on reproduction is limited. The aim of the present study was to evaluate the influence of chlorothalonil on male reproductive physiology using the zebrafish (Danio rerio) as ecotoxicological model. Zebrafish were exposed for 7 days to two concentrations of chlorothalonil (0.1 and 10 µg/L) along with a control group (with DMSO - 0.001%). Gene expression of hypothalamus-pituitary-gonad axis components (gnrh2, gnrh3, lhr, fshr, star, hsd17b1, hsd17b3, and cyp19a1), as well as hepatic vitellogenin concentration were assessed. In sperm cells, reactive oxygen species (ROS) content, lipid peroxidation (LPO), mitochondrial functionality, and membrane integrity and fluidity were evaluated. Results indicate that exposure to the higher concentration of chlorothalonil led to a reduction in brain gnr2 expression. In gonads, mRNA levels of lhr, star, and hsd17b1 were decreased at both chlorothalonil concentrations tested. Similarly, hepatic vitellogenin concentration was reduced. Regarding sperm cells, a decreased ROS level was observed, without significant difference in LPO level. Additionally, a higher mitochondrial potential and lower membrane fluidity were observed in zebrafish exposed to chlorothalonil. These findings demonstrate that chlorothalonil acts as an endocrine disruptor, influencing reproductive control mechanisms, as evidenced by changes in expression of genes HPG axis, as well as hepatic vitellogenin concentration. Furthermore, our findings reveal that exposure to this contaminant may compromise the reproductive success of the species, as it affected sperm quality parameters.


Assuntos
Disruptores Endócrinos , Fungicidas Industriais , Nitrilas , Poluentes Químicos da Água , Animais , Masculino , Peixe-Zebra/metabolismo , Disruptores Endócrinos/metabolismo , Eixo Hipotalâmico-Hipofisário-Gonadal , Espécies Reativas de Oxigênio/metabolismo , Fungicidas Industriais/metabolismo , Vitelogeninas/metabolismo , Sêmen , Gônadas , Espermatozoides/metabolismo , Reprodução , Poluentes Químicos da Água/metabolismo
3.
Environ Res ; 248: 118240, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266903

RESUMO

Monitoring of contaminant levels in wildlife over time is a tool for assessing the presence and persistence of environmental impacts at ecosystem, community and population levels. Tropical seabirds breeding in the Abrolhos Archipelago, 70 km off the Brazilian coast, forage in areas under the influence of the Doce River discharge. In 2015, the Fundão Dam collapsed and released ca 60 million tons of iron ore tailings into the ocean. In the present study, red-billed tropicbirds Phaethon aethereus and brown boobies Sula leucogaster breeding in Abrolhos were monitored over four years (2019-2022) for metal (Fe, Mn, Zn, Cu, Cr, Hg, Pb, Cd) and metalloid (As) concentrations in blood and feathers. Over six sampling events, metal (loid) concentrations showed strong temporal variation in both tissues. Overall, feathers showed greater element concentrations than blood, with stronger correlations between elements, especially Mn and the nonessential As, Cd, Hg and Pb. Mn is one of the major chemical markers of the Fundão Dam tailings. Metal (loid) concentrations in the tropical seabirds evaluated were above suggested threshold levels for most nonessential elements (As, Cd and Pb), especially in February 2021, when metal (loid) concentrations peaked in feathers. In this case, values were orders of magnitude higher than those observed in other sampling events. This occurred one year after a major rainy season in the Doce River basin, which increased river discharge of contaminated mud into the ocean, where contaminants are further remobilized by winds and currents, resulting in transference through the marine food web. This finding is consistent to what has been observed for other ecosystem compartments monitored in the region under the influence of the Doce River. Our findings highlight the utility of using tropical seabirds as sentinels of marine pollution, revealing strong temporal patterns in metal (loid) concentrations associated to bottom-up climatic processes.


Assuntos
Arsênio , Desastres , Mercúrio , Poluentes Químicos da Água , Animais , Arsênio/análise , Ecossistema , Plumas , Cádmio , Chumbo , Monitoramento Ambiental/métodos , Aves , Brasil , Rios , Poluentes Químicos da Água/análise
4.
Aquat Toxicol ; 261: 106613, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37352752

RESUMO

Copper ions (Cu) are one of the most frequent trace-contaminants found in Brazilian waters and, although considered as an essential element, in high concentrations can accumulate and induce toxicity. Biomarkers are important tools that can be used to assess these impacts, but to be considered trustworthy, they have to be previously tested in target organisms through laboratory studies under controlled conditions. However, many of these experiments are conducted using only males, as it is believed that the hormonal variation of females can bias the results, increasing data variability. Notwithstanding, few studies have actually tested this hypothesis, highlighting the importance of considering and measuring the role of sex in ecotoxicological studies. The aim this study was to evaluate the influence of sex on biomarkers classically used in environmental monitoring programs using the fish Poecilia vivipara as model. For this, females and males were exposed for 96 h to two Cu concentrations (9 and 20 µg/L) and a control group. In liver and gills, Cu accumulation, total antioxidant capacity (TAC) and lipid peroxidation (LPO) were evaluated. In addition, samples of peripheral blood were used for neutrophil to lymphocyte ratio determination, a measure of the onset of secondary stress. Results show that Cu hepatic accumulation did not differ between females and males, but higher levels of this metal were observed in exposed animals compared to control fish. Additionally, interactive effects were observed for hepatic LPO, as males showed elevated oxidative damage in comparison to females. Moreover, Cu exposure elevated hepatic LPO relative to control only in males, but this increase in oxidative damage was not accompanied by changes in liver TAC. On the other hand, differences in branchial Cu accumulation and LPO were not observed. Conversely, control females showed elevated TAC in comparison to control males, but Cu exposure eliminated this difference. Cu exposure also induced an increase in the N:L ratio, indicating the presence of a secondary stress response unrelated to sex. Ultimately, the findings of this study demonstrate that sex can influence the response of biomarkers that are typically used in ecotoxicological investigations in a multifaceted manner. As a result, using animals from a singular sex in such studies may result in consequential outcomes, potentially leading to underestimation or overestimation of results.


Assuntos
Fundulidae , Poecilia , Poluentes Químicos da Água , Animais , Masculino , Feminino , Poecilia/fisiologia , Poluentes Químicos da Água/toxicidade , Cobre/toxicidade , Cobre/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Brânquias
5.
Bull Environ Contam Toxicol ; 110(4): 77, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37027049

RESUMO

In this study, we examine markers of oxidative stress in the tetra Hyphessobrycon luetkenii collected from two locations in the copper contaminated João Dias creek (southern Brazil). Also, specimens were translocated from a clean reference section of the creek to a polluted stretch and vice-versa. Fish were held at in submerged cages for 96 h and then sacrificed. Nuclear abnormalities in erythrocytes and total antioxidant capacity, lipid peroxidation and protein carbonylation in gills, brain, liver and muscle displayed similar trends in both groups. Lipid peroxidation increased in all tissues of individuals translocated to the polluted site but only in liver and muscle of those translocated to the reference site. Increased protein carbonylation was also observed in gills of individuals translocated to the reference location. These results suggest similar oxidative stress among fish from the reference and polluted locations and that long-term metals exposure may require adaptations toward oxidative stress responses.


Assuntos
Characidae , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Cobre/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Estresse Oxidativo , Characidae/metabolismo , Água Doce , Mineração , Brânquias/metabolismo , Peroxidação de Lipídeos , Fígado/metabolismo
6.
Sci Total Environ ; 832: 154878, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364171

RESUMO

This study investigates the ecotoxicological impacts of the Fundão dam rupture, one of the major environmental disaster that occurred in Brazil and in the world mining industry history, through multi-biomarkers responses and metals bioaccumulation in the fish community of different trophic levels. Specimens of the fishes (omnivorous/herbivorous and carnivorous) were collected along the Doce River channel and its affluent Guandú River, and in different lakes and coastal lagoons adjacent to the river channel, in the Espirito Santo State, Southeast of Brazil. Four sampling collections were carried out over two years (2018 to 2020, during dry and rainy seasons). For both trophic groups the biomarkers responses indicated physiological alterations related to metals exposure and showed strong seasonal variations. The principal component analysis and integrated biomarker response index showed that DNA damage and lipid peroxidation were more associated with dry season 2 (Sep/Oct 2019) and the oxidative damage in proteins, metallothioneins concentration and the activity of superoxide dismutase in the gills showed a greater association with rainy season 2 (Jan/Feb 2020). On the other hand, the enzymes of energy metabolism, catalase and histological damage in the liver and the gills, were more associated with the dry and rainy campaigns of the first year of monitoring. The multivariate approach also suggested a temporal intensification in the bioaccumulation of metals and biological effects in the lacustrine environments. Thus, these results demonstrate that the release of mineral residues from the rupture of the Fundão mine dam affects the health status of the fish from the Doce River basin, provoking metals bioaccumulation, hepatic and branchial damage in the fish besides inducing of enzyme activity related to metal contamination, even four years after the rupture.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Animais , Bioacumulação , Biomarcadores , Brasil , Peixes , Metais/análise , Metais/toxicidade , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
7.
Mar Pollut Bull ; 177: 113511, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35303634

RESUMO

This study evaluated the impacts of the mining tailings after the rupture of the Fundão dam on fish communities on the Atlantic Ocean southeast coast. Four sample collections were carried out over two years (2018-2020), in seasonal periods. Omnivorous/herbivorous and carnivorous fish were collected for analysis of metal bioaccumulation, multibiomarkers of environmental contamination and histopathology. Metal bioaccumulation was stronger correlated in carnivorous fish in the dry-2018 collection, besides higher activity of antioxidant enzymes, energy metabolism and higher morphological damage; however, there was less oxidative damage and less metallothioneins induction, and these variables were strongly associated with the wet-2020 collection. In a temporal view, it was possible to observe a reduction in metal levels in fish, except in the mouth of the Doce River. These events can be explained by seasonal natural events, which tend the resuspension and boost metal levels, mainly in the mouth region during the rainy season.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Animais , Bioacumulação , Brasil , Peixes/metabolismo , Poluentes Químicos da Água/análise
8.
Arch Environ Contam Toxicol ; 82(1): 62-71, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34664084

RESUMO

Fish living in the João Dias creek (southern Brazil) have to deal with trace-metal contamination in the long-term basis, as this aquatic environment has been historically impacted by copper mining activities. In order to survive in this harsh environment, the local biota had to develop adaptations related to pollution tolerance. The aim of this study was to test if biochemical mechanisms related to osmoregulation were among these adaptations, using translocation experiments. Water ionic and trace-metal compositions were measured in a nonmetal impacted site (NMIS) and in a metal impacted site (MIS) of this creek. Also, whole-body metal accumulation, ion concentration and branchial enzyme activity (Na,K-ATPase and carbonic anhydrase) were evaluated in Hyphessobrycon luetkenii. In both NMIS and MIS, fish were collected and immediately stored, kept caged or translocated from sites. The result shows that waterborne Cu was 3.4-fold higher at the MIS. Accordingly, animals that had contact with this site showed elevated whole-body Cu levels. Moreover, both translocated groups showed elevated Na,K-ATPase activity. Additionally, fish translocated from the NMIS to the MIS showed lower carbonic anhydrase activity. These findings indicate that H. luetkenii chronically or acutely exposed to naturally elevated waterborne Cu showed a rapid Cu bioaccumulation but was unable to readily excrete it. Moreover, classic Cu osmoregulatory toxicity related to Na,K-ATPase inhibition was not observed. Conversely, impacts in ammonia excretion related to carbonic anhydrase inhibition may have occurred.


Assuntos
Cobre , Poluentes Químicos da Água , Animais , Cobre/análise , Brânquias/metabolismo , Metais , ATPase Trocadora de Sódio-Potássio/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
9.
Sci Total Environ ; 806(Pt 3): 151340, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34728208

RESUMO

Temporal and spatial variabilities in concentrations of metals (Cd, Cr, Cu, Fe, Hg, Mn, Pb and Zn) and metalloid (As) associated with the Fundão dam tailings were evaluated in water, sediment and biota from freshwater (tributary, river, lakes and lagoons), marine and coastal (mangroves and beaches) ecosystems affected by the Mariana dam disaster (southeastern Brazil). In freshwater shrimps and fishes, temporal increases in the concentrations of most elements analyzed were observed. This finding was clearly associated with temporal increases in the concentrations of As and metals observed in both water and sediment. In turn, freshwater plankton showed only a temporal increase in Hg concentration, which was also associated with an increased concentration of this metal in the abiotic matrices. In marine fishes, temporal increases were only observed for Cu, Fe and Pb concentrations. Also, temporal increase was observed for Fe concentration in marine plankton (phytoplankton and zooplankton) and shrimps. Marine phytoplankton also showed a temporal increase in Hg concentration. All these findings were clearly associated with temporal increases in the concentrations of these metals in marine sediments. Mangrove crabs showed temporal increases in Hg and Cd, which were associated with temporal increases in water Hg and sediment Cd concentrations, respectively. In turn, beach crabs displayed temporal increases in Mn and Zn, which were associated with temporal increases in the concentrations of these metals in sediments, especially for Mn. In summary, all environmental matrices evaluated in the present study were shown to be contaminated with metals and metalloid associated with the Fundão dam tailings. Additionally, findings reported in the present study relative to the spatial variabilities observed in the whole aquatic area affected by the Fundão dam failure clearly reinforce the need of incorporating biological diversity in monitoring programs aiming to assess environmental health of aquatic systems, considering that patterns of metals and metalloid contamination levels may vary among taxa.


Assuntos
Arsênio , Metais Pesados , Poluentes Químicos da Água , Biota , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Metais Pesados/análise , Água , Poluentes Químicos da Água/análise
10.
Sci Total Environ ; 807(Pt 2): 151077, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34678360

RESUMO

The Mariana's dam collapse was the worst environmental disaster in Brazilian history and one of the biggest worldwide. This perverse disaster resulted in the release of a contaminated mud tsunami that greatly impacted both aquatic and terrestrial biota. The aim of this study was to track environmental impacts resulting from Mariana's disaster using trace-element accumulation in avian blood and feathers as monitoring tool. For this, animals were collected at Doce River mouth (Regência), origin of the contaminated mud, and at southern (Aracruz) and northern (São Mateus) coastal areas. There were two sampling events (2018-2019), one during the winter period (first collection) and another during the summer period (second collection). Trace-element assessed were As, Cd, Cr, Cu, Fe, Pb, Hg, Mn and Zn. Findings show that inorganic contamination in birds followed a strong spatial and temporal behavior. In terms of time patterns, blood and feather contamination levels were markedly elevated in samples from the first collection event in comparison to the second. In terms of space, bioaccumulation was greater in Doce River mouth (Regência) and southern area (Aracruz). Additionally, levels found for Pb, Hg, As and Cd in birds from the first expedition were above proposed threshold levels, indicating possible health impacts. Finally, it is concluded that avian from areas impacted by Mariana's disaster still presents elevated levels of inorganic contamination even after 5 years following the event. Additionally, local climatic factors might pose as major drivers for bioaccumulation patterns in these animals, resulting in marked spatial and temporal fluctuations.


Assuntos
Desastres , Plumas , Animais , Bioacumulação , Aves , Rios
11.
Chemosphere ; 288(Pt 3): 132649, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34699884

RESUMO

Response of biomarkers to chemical contamination was evaluated in crabs of the Callinectes genus (Callinectes ornatus and C. bocourti) from two tropical estuaries (São José and São Marcos bays) of the Maranhão State (northeastern Brazil). Biomarkers evaluated included hepatopancreatic metallothionein-like proteins (MTLP) and lipid peroxidation (LPO), as well as muscle acetylcholinesterase (AChE). Tissue concentrations of metals (pereiopod muscle and hepatopancreas), hydrocarbons (hepatopancreas) and organochlorine pesticides (hepatopancreas) were also evaluated. Crab samples were collected in three sites of each estuary (São Marcos Bay and São José Bay). Sampling was performed in August/2012 (dry season), January/2013 (rainy season), August/2013 (dry season), and January/2014 (rainy season). Concentrations of chemical contaminants and responses of biomarkers showed significant spatial (São Marcos Bay and São José Bay) and/or seasonal (dry and rainy seasons) and annual (2012-2014) variability. However, a general higher Zn concentration was observed in hepatopancreas of crabs from São José Bay. In turn, a general higher Cd concentration paralleled by oxidative damage (LPO) was observed in hepatopancreas of crabs from São Marcos Bay. As expected, these findings support the idea that this bay is more intensively or chronically impacted by industrial activities while the São José Bay is likely more affected by domestic activities. Interestingly, LPO level in crab hepatopancreas showed to be the most reliable and adequate biomarker to distinguish the two bays.


Assuntos
Braquiúros , Praguicidas , Poluentes Químicos da Água , Acetilcolinesterase , Animais , Baías , Biomarcadores , Brasil , Monitoramento Ambiental , Estuários , Hidrocarbonetos , Poluentes Químicos da Água/análise
12.
Artigo em Inglês | MEDLINE | ID: mdl-33122134

RESUMO

It is widely known that metals can alter enzyme functioning, however, little is known about the mechanisms of metal toxicity in energy metabolism enzymes of corals. Thus, the present study had two objectives: firstly, we evaluated the activity of eight metabolic enzymes of the coral Mussismilia harttii to clarify metabolic functioning under field conditions. After that, we investigated the in vitro effect of copper (Cu) exposure in the activity of an enzyme representative of each metabolism stage. We evaluated enzymes involved in glycolysis (hexokinase, HK; phosphofructokinase, PFK; pyruvate kinase, PK and lactate dehydrogenase, LDH), Krebs cycle (citrate synthase, CS and isocitrate dehydrogenase, IDH), electron transport chain (electron transport system activity, ETS) and pentose phosphate pathway (glucose-6-phosphate dehydrogenase, G6PDH). The in vitro tests were performed through contamination of the reaction medium using Cu concentrations of 0, 1.4, 3.7 and 14.2 µg L-1. The results showed that M. harttii has elevated activity of HK, PK and CS in field conditions compared to the activity of other energy metabolism enzymes evaluated. Moreover, lower activities of LDH and ETS in exposed samples were observed. In conclusion, in field conditions this species has elevated aerobic metabolism and glucose may be an important energetic fuel. Also, exposure to Cu in vitro caused inhibition of LDH and ETS by direct binding.


Assuntos
Antozoários/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metais/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Antozoários/enzimologia , Antozoários/metabolismo , Citrato (si)-Sintase/metabolismo , Cobre/toxicidade , Glucose/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Glicólise/efeitos dos fármacos , Hexoquinase/metabolismo , L-Lactato Desidrogenase/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos , Piruvato Quinase/metabolismo
13.
Chemosphere ; 253: 126631, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32302917

RESUMO

We have previously demonstrated in a companion work that acclimation to 28 °C potentiated waterborne copper (Cu) toxic effects in Poecilia vivipara through oxidative stress-related processes. In the present study, we hypothesized that these results were related to kinetic metabolic adjustments in enzymes from aerobic and anaerobic pathways. To test this, P. vivipara was acclimated to two temperatures (22 °C or 28 °C) for three weeks and then exposed to Cu (control, 9 or 20 µg/L) for 96 h. The activity of enzymes from glycolysis (pyruvate kinase [PK] and lactate dehydrogenase [LDH]), Krebs cycle (citrate synthase [CS]) and the electron transport chain system (ETS) were assessed in gills, liver and muscle. Interactive effects were only seen for hepatic LDH activity, as both metal exposure and heat stress, combined or not, inhibited this enzyme, showing a suppression in anaerobic pathways. Conversely, a Cu main effect was present in the liver, expressed as an elevation in ETS activity, showing an enhancement in hepatic aerobic metabolism likely related with the very energy-demanding process of metal detoxification. Moreover, this study shows that P. vivipara has a remarkable ability to compensate heat stress in terms of energy metabolism, as we could not observe acclimation temperature effects for most of the cases. Nonetheless, a tissue-dependent effect of elevated temperature was observed, as we could observe an inhibition in muscular CS activity. Finally, it is concluded that kinetic adjustments in terms of the energy metabolism are not related with the temperature-dependent elevation of Cu toxicity in P. vivipara as we previously hypothesized.


Assuntos
Cobre/toxicidade , Metabolismo Energético/fisiologia , Poecilia/fisiologia , Temperatura , Poluentes Químicos da Água/toxicidade , Aclimatação/efeitos dos fármacos , Animais , Ciclo do Ácido Cítrico , Metabolismo Energético/efeitos dos fármacos , Fundulidae/metabolismo , Brânquias/metabolismo , Glicólise , L-Lactato Desidrogenase/metabolismo , Fígado/metabolismo , Metais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poecilia/metabolismo , Piruvato Quinase/metabolismo
14.
Chemosphere ; 236: 124332, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31323547

RESUMO

In previous studies, we have shown that copper (Cu) is significantly accumulated in various tissues of killifish Poecilia vivipara following chronic exposure. Also, we showed that chronic metal exposure disrupted energy production and growth in this species. In the present study, we aimed to evaluate if chronic exposure to this metal could also affect reproductive parameters of P. vivipara males (sperm quality). In order to test that, newborn (<24 h-old) fish were exposed to two concentrations of waterborne Cu (5 and 9 µg/L) for 345 days. After exposure, fish were euthanized and the testes were collected for sperm analysis. We could observe that exposed animals had reduced sperm motility and period of motility. Also, the sperm of exposed fish had reduced plasma membrane integrity, mitochondrial functionality and DNA integrity when compared to sperm of control animals. It is suggested that the well-known association of Cu with elevated oxidative damage, endocrine disruption and energetic disturbance are involved with the observed outcomes. The results obtained in the present study show that chronic exposure to environmentally relevant concentrations of waterborne Cu caused reductions in all parameters used to evaluate sperm quality. Therefore, it is concluded that life-time exposure to this metal may disrupt fish reproduction and negatively affect the maintenance of its populations.


Assuntos
Cobre/efeitos adversos , Cobre/química , Fundulidae/crescimento & desenvolvimento , Metais/efeitos adversos , Motilidade dos Espermatozoides/imunologia , Poluentes Químicos da Água/efeitos adversos , Poluentes Químicos da Água/química , Animais , Humanos , Masculino , Metais/química
15.
Int J Mol Sci ; 20(12)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242558

RESUMO

The emission of greenhouse gases has grown in unprecedented levels since the beginning of the industrial era. As a result, global climate changes, such as heightened global temperature and ocean acidification, are expected to negatively impact populations. Similarly, industrial and urban unsustainable development are also expected to impose local impacts of their own, such as environmental pollution with organic and inorganic chemicals. As an answer, biomarkers can be used in environmental programs to assess these impacts. These tools are based in the quantification of biochemical and cellular responses of target species that are known to respond in a sensitive and specific way to such stresses. In this context, carbonic anhydrase has shown to be a promising biomarker candidate for the assessment of global and local impacts in biomonitoring programs, especially in marine zones, such as coral reefs, considering the pivotal role of this enzyme in the calcification process. Therefore, the aim of this review is to show the recent advances in the carbonic anhydrase research and the reasons why it can be considered as a promising biomarker to be used for calcifying organisms.


Assuntos
Calcificação Fisiológica , Anidrases Carbônicas/metabolismo , Animais , Antozoários/fisiologia , Biomarcadores , Concentração de Íons de Hidrogênio , Modelos Biológicos , Temperatura
16.
Chemosphere ; 227: 580-588, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31009864

RESUMO

Copper ions (Cu) are essential to life maintenance, nonetheless, elevated concentrations can be hazardous. Acute and sub-chronic toxic effects of this metal are well known and are usually related to enzymatic inhibition, elevated ROS production and dysfunction of energy metabolism. Despite that, chronic studies are extremely rare. Therefore, the aim of this study was to assess the effects of chronic exposure to 5, 9 and 20 µg/L Cu (28 ad 345 days) on the energy metabolism and survival of the killifish Poecilia vivipara. To accomplish that, we evaluated the activity of enzymes related to aerobic (pyruvate kinase (PK); citrate synthase (CS)) and anaerobic metabolism (lactate dehydrogenase (LDH)) in whole-body (28 days) or in gills, liver and muscle (345 days) of exposed fish. Additionally, whole-body oxygen consumption was evaluated in fish exposed for 28 days and hepatic and muscular expression of genes involved in mitochondrial metabolism (cox I, II and III and atp5a1) was assessed in animals exposed for 345 days. Finally, final survival was evaluated. Following 28 days, Cu did not affect survival neither enzyme activities. However, increased whole-body oxygen consumption was observed in comparison to control condition. After 345 days, 76.8%, 63.9%, 60.9% and 0% survival were observed for control, 5, 9 and 20 µg/L groups, respectively. Animals exposed to 5 and 9 µg/L had a significant reduction in branchial and muscular LDH activity and in hepatic PK activity. Also, exposure to 9 µg/L significantly increased hepatic CS activity. For gene expression, Cu down-regulated muscular cox II (9 µg/L) and III (5 and 9 µg/L), and up-regulated hepatic atp5a1 (9 µg/L). Findings reported in the present study indicate that chronic exposure to Cu induces tissue-specific responses in key aspects of the energetic metabolism. In gills and muscle, Cu leads to reduced energy production through inhibition of anaerobic pathways and mitochondrial respiratory chain. This effect is paralleled by an increased ATP consumption in the liver, characterized by the augmented CS activity and atp5a1 expression. Finally, reduced PK activity indicate that oxidative stress may be involved with the observed outcomes.


Assuntos
Cobre/toxicidade , Metabolismo Energético/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , L-Lactato Desidrogenase/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Músculos/efeitos dos fármacos , Músculos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poecilia/metabolismo , Piruvato Quinase/metabolismo , Testes de Toxicidade Crônica
17.
Chemosphere ; 223: 257-262, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30784733

RESUMO

The involvement of transporting proteins on copper (Cu) bioaccumulation was evaluated in the killifish Poecilia vivipara chronically exposed to environmentally relevant concentrations of waterborne Cu. Fish (<24 h-old) were maintained under control condition or exposed to different waterborne Cu concentrations (5, 9 and 20 µg/L) for 28 and 345 days in saltwater. Following exposure periods, Cu accumulation and the expression of genes encoding for the high affinity Cu-transporter (ctr1) and the P-type Cu-ATPase (atp7b) were evaluated. Whole-body metal accumulation and gene expression were evaluated in fish exposed to 28 days. Similarly, in fish exposed to 345 days, liver, gills and gut were also evaluated. No fish survival was observed after exposure to 20 µg/L for 345 days. Whole-body Cu accumulation was significantly higher in fish exposed to 20 µg/L Cu for 28 days and in fish exposed to 9 µg/L for 345 days in comparison to control animals. Similarly, tissue Cu accumulation was significantly higher in fish exposed to 9 µg/L for 345 days in comparison to control animal. However, no significant accumulation was observed in fish muscle. Following exposure for 28 days, whole-body ctr1 expression was slightly induced in fish exposed to 9 µg/L. In turn, no significant change in ctr1 expression was observed following exposure to Cu for 345 days. Differently, whole-body atp7b expression was markedly up-regulated in the whole-body of fish exposed Cu for 28 days and in tissues of fish exposed to Cu for 345 days. These findings indicate the expression of atp7b is more responsive to Cu accumulation in P. vivipara than ctr1 expression and, therefore, more suitable to be used as a biomarker of exposure to this metal. Also, we argue that the expression of atp7b is sustained at elevated levels for as much time as fish are maintained in Cu contaminated water.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , ATPases Transportadoras de Cobre/metabolismo , Cobre/farmacologia , Metais/metabolismo , Poecilia/metabolismo , Animais , Fundulidae , Regulação da Expressão Gênica , Distribuição Tecidual , Poluentes Químicos da Água/farmacologia
18.
Chemosphere ; 203: 410-417, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29631113

RESUMO

Reduced fish growth following chronic exposure to dissolved copper (Cu) is well reported in the literature. Nevertheless, information on the mechanism(s) involved in this process is scarce. Therefore, we evaluated growth, gene expression and concentrations of proteins related to growth regulation in the viviparous guppy Poecilia vivipara chronically exposed to dissolved Cu. Newborn (<24 h after birth) fish were kept under control conditions or exposed to environmentally relevant concentrations of Cu (5 and 9 µg/L) in salt water (24 ppt) for 345 days. After exposure, fish growth was evaluated based on body weight and length. Also, growth hormone (gh) mRNA expression was evaluated in brain, while growth hormone receptor 1 (ghr1) and 2 (ghr2) mRNA expressions were analyzed in brain, skeletal muscle and liver. In turn, insulin-like growth factor 1 (igf1) and 2 (igf2) mRNA expressions were evaluated in skeletal muscle and liver. Additionally, Gh concentration was assessed in brain, while Ghr concentration was evaluated in skeletal muscle and liver. Exposure to 9 µg/L Cu reduced fish body weigh and length. Metal exposure affected mRNA expression only in skeletal muscle. Reduced ghr2 mRNA expression was observed in guppies exposed to 5 and 9 µg/L Cu. Additionally, reduced igf1 and igf2 mRNA expressions were observed in guppies exposed to 9 µg/L Cu. However, no significant change in Ghr concentration was observed. The reduced ghr2 mRNA expression suggests that chronic Cu exposure induced an insensitivity of the skeletal muscle to Gh, thus resulting in reduced igf1 and igf2 mRNA expression which lead to reduced fish growth. These findings indicate that chronic exposure to dissolved Cu disrupts the somatotropic axis regulation, thus helping to elucidate the mechanism underlying the Cu-dependent inhibition of growth observed in the viviparous fish P. vivipara.


Assuntos
Cobre/toxicidade , Poecilia/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Cobre/metabolismo , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Poecilia/metabolismo , Proteínas Recombinantes/metabolismo , Testes de Toxicidade Crônica , Poluentes Químicos da Água/metabolismo
19.
Chemosphere ; 196: 260-269, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29306198

RESUMO

Roundup is the most popular glyphosate-based herbicide (GBH) worldwide. These formulations kill a wide range of plants. Despite that, non-target species can be jeopardized by GBH, such as the annual fish Austrolebias nigrofasciatus. This species occurs in wetlands that dries annually. Key-adaptations permit them to live in such harsh habitats, e. i. Elevated fertility, drought-tolerant diapausing embryos and elevated thermal tolerance. We aimed to evaluate acute (96 h) effects of Roundup exposure (0.36 or 3.62 mg a. e./L) in reproduction, diapause pattern and embryonic upper thermal tolerance (EUTT) of A. nigrofasciatus. For such, we evaluated the number and diameter of embryos produced by exposed fish. Also, recently fertilized embryos were exposed and its diapause pattern was evaluated. Following 15 post exposure days (PED), we evaluated the number of somite pairs and following 30, 35 and 40 PED we evaluated the proportion of pigmented embryos (PPE). Finally, the critical thermal maximum (CTMax) of exposed embryos was assessed. Results demonstrated that couples exposed to 0.36 mg a. e./L Roundup produced less but larger embryos. Similarly, embryos exposed to 3.62 mg a. e./L Roundup had a reduced PPE following 30 PED. Finally, embryos exposed to 0.32 mg a. e./L Roundup had a CTMax reduction of 2.6 °C and were more sensitive to minor increases in heating rates. These results indicate that Roundup have negative outcomes in fish reproduction, embryonic development and EUTT. This information is of particular interest to the conservation of annual fish, considering that those are key-adaptations that permit these animals to survive the harsh impositions of ephemeral wetlands.


Assuntos
Ciprinodontiformes/fisiologia , Embrião não Mamífero/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Animais , Diapausa/efeitos dos fármacos , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Fertilidade/efeitos dos fármacos , Glicina/toxicidade , Reprodução/efeitos dos fármacos , Termotolerância/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
20.
Chemosphere ; 185: 860-867, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28735239

RESUMO

Glyphosate-based herbicides (GBH) are the major pesticides used worldwide. Among them, the Roundup formulations are the most popular. Some aspects of GBH toxicity are well known, such as induction of oxidative stress. However, embryotoxicity is scarcely known. Therefore, the aim of the present study was to evaluate the effect of exposure to different Roundup Transorb R concentrations (0.36, 1.80, 3.62 and 5.43 mg glyphosate a.e./L) on Odontesthes humensis embryonic development. Embryos were sampled at three exposure times (48, 72 and 96 h). After 48 h, the stage of embryonic development and the number of somite pairs were analyzed; after 72 h, the percentage of pigmented embryos were evaluated and after 96 h, the eye diameter (ED) and the distance between eyes (DE) were measured. Mortality rates were daily calculated. Results show that Roundup exposure to all concentrations did not alter the endpoints evaluated at 48 and 72 h. On the other hand, exposure for 96 h to all concentrations induced a concentration-dependent reduction in ED and DE. Additionally, exposure to 5.43 mg a.e./L increased mortality. These findings indicate that Roundup has the potential to produce morphological alterations in fish embryos even at the lower and ecologically relevant concentration tested (0.36 mg a.e./L). This result corroborates the hypothesis that glyphosate alters the retinoic acid signaling pathway. Additionally, our findings indicate that exposure to high concentrations of Roundup (5.43 mg a.e./L) for 96 h causes high mortality rates of fish embryos. This is the first report of GBH embryotoxicity in an endemic fish of southern areas in South America.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Animais , Glicina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Smegmamorpha/embriologia , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...